797 research outputs found

    Resolve survey Photometry and volume-limited calibration of the Photometric gas fractions technique

    Get PDF
    We present custom-processed ultraviolet, optical, and near-infrared photometry for the REsolved Spectroscopy of a Local VolumE (RESOLVE) survey, a volume-limited census of stellar, gas, and dynamical mass within two subvolumes of the nearby universe (RESOLVE-A and RESOLVE-B). RESOLVE is complete down to baryonic mass 10 ~ 9.1 9.3 - M, probing the upper end of the dwarf galaxy regime. In contrast to standard pipeline photometry (e.g., SDSS), our photometry uses optimal background subtraction, avoids suppressing color gradients, and employs multiple flux extrapolation routines to estimate systematic errors. With these improvements, we measure brighter magnitudes, larger radii, bluer colors, and a real increase in scatter around the red sequence. Combining stellar mass estimates based on our optimized photometry with the nearly complete H I mass census for RESOLVE-A, we create new z = 0 volume-limited calibrations of the photometric gas fractions (PGF) technique, which predicts gas-to-stellar mass ratios (G/S) from galaxy colors and optional additional parameters. We analyze G/S-color residuals versus potential third parameters, finding that axial ratio is the best independent and physically meaningful third parameter. We define a “modified color” from planar fits to G/S as a function of both color and axial ratio. In the complete galaxy population, upper limits on G/S bias linear and planar fits. We therefore model the entire PGF probability density field, enabling iterative statistical modeling of upper limits and prediction of full G/S probability distributions for individual galaxies. These distributions have two-component structure in the red color regime. Finally, we use the RESOLVE-B 21 cm census to test several PGF calibrations, finding that most systematically under- or overestimate gas masses, but the full probability density method performs well

    ECO AND RESOLVE: GALAXY DISK GROWTH IN ENVIRONMENTAL CONTEXT

    Get PDF
    We study the relationships between galaxy environments and galaxy properties related to disk (re)growth, considering two highly complete samples that are approximately baryonic mass limited into the high-mass dwarf galaxy regime, the Environmental COntext catalog (data release herein) and the B-semester region of the REsolved Spectroscopy Of a Local VolumE survey. We quantify galaxy environments using both group identification and smoothed galaxy density field methods. We use by-eye and quantitative morphological classifications plus atomic gas content measurements and estimates. We find that blue early-type (E/S0) galaxies, gas-dominated galaxies, and UV-bright disk host galaxies all become distinctly more common below group halo mass 1011.5  M\sim {10}^{11.5}\;{M}_{\odot }, implying that this low group halo mass regime may be a preferred regime for significant disk growth activity. We also find that blue early-type and blue late-type galaxies inhabit environments of similar group halo mass at fixed baryonic mass, consistent with a scenario in which blue early-types can regrow late-type disks. In fact, we find that the only significant difference in the typical group halo mass inhabited by different galaxy classes is for satellite galaxies with different colors, where at fixed baryonic mass red early- and late-types have higher typical group halo masses than blue early- and late-types. More generally, we argue that the traditional morphology–environment relation (i.e., that denser environments tend to have more early-types) can be largely attributed to the morphology-galaxy mass relation for centrals and the color–environment relation for satellites

    Probing quantum and thermal noise in an interacting many-body system

    Full text link
    The probabilistic character of the measurement process is one of the most puzzling and fascinating aspects of quantum mechanics. In many-body systems quantum mechanical noise reveals non-local correlations of the underlying many-body states. Here, we provide a complete experimental analysis of the shot-to-shot variations of interference fringe contrast for pairs of independently created one-dimensional Bose condensates. Analyzing different system sizes we observe the crossover from thermal to quantum noise, reflected in a characteristic change in the distribution functions from Poissonian to Gumbel-type, in excellent agreement with theoretical predictions based on the Luttinger liquid formalism. We present the first experimental observation of quasi long-range order in one-dimensional atomic condensates, which is a hallmark of quantum fluctuations in one-dimensional systems. Furthermore, our experiments constitute the first analysis of the full distribution of quantum noise in an interacting many-body system

    Phylogenetic Codivergence Supports Coevolution of Mimetic Heliconius Butterflies

    Get PDF
    The unpalatable and warning-patterned butterflies _Heliconius erato_ and _Heliconius melpomene_ provide the best studied example of mutualistic Müllerian mimicry, thought – but rarely demonstrated – to promote coevolution. Some of the strongest available evidence for coevolution comes from phylogenetic codivergence, the parallel divergence of ecologically associated lineages. Early evolutionary reconstructions suggested codivergence between mimetic populations of _H. erato_ and _H. melpomene_, and this was initially hailed as the most striking known case of coevolution. However, subsequent molecular phylogenetic analyses found discrepancies in phylogenetic branching patterns and timing (topological and temporal incongruence) that argued against codivergence. We present the first explicit cophylogenetic test of codivergence between mimetic populations of _H. erato_ and _H. melpomene_, and re-examine the timing of these radiations. We find statistically significant topological congruence between multilocus coalescent population phylogenies of _H. erato_ and _H. melpomene_, supporting repeated codivergence of mimetic populations. Divergence time estimates, based on a Bayesian coalescent model, suggest that the evolutionary radiations of _H. erato_ and _H. melpomene_ occurred over the same time period, and are compatible with a series of temporally congruent codivergence events. This evidence supports a history of reciprocal coevolution between Müllerian co-mimics characterised by phylogenetic codivergence and parallel phenotypic change

    Measuring spirometry in a lung cancer screening cohort highlights possible underdiagnosis and misdiagnosis of Chronic Obstructive Pulmonary Disease

    Get PDF
    Introduction: Chronic Obstructive Pulmonary Disease (COPD) is underdiagnosed, and measurement of spirometry alongside low-dose computed tomography (LDCT) screening for lung cancer is one strategy to increase earlier diagnosis of this disease. // Methods: Ever-smokers at high risk of lung cancer were invited to the Yorkshire Lung Screening Trial for a Lung Health Check (LHC) comprising LDCT screening, pre-bronchodilator spirometry and smoking cessation service. In this cross-sectional study we present data on participant demographics, respiratory symptoms, lung function, emphysema on imaging and both self-reported and primary care diagnoses of COPD. Multivariable logistic regression analysis identified factors associated with possible underdiagnosis and misdiagnosis of COPD in this population, with airflow obstruction (AO) defined as FEV1/FVC ratio <0.70. // Results: Of 3,920 LHC attendees undergoing spirometry, 17% had undiagnosed AO with respiratory symptoms, representing potentially undiagnosed COPD. Compared to those with a primary care COPD code, this population had milder symptoms, better lung function, and were more likely to be current smokers (p≤0.001 for all comparisons). Of 836 attendees with a primary care COPD code who underwent spirometry, 19% did not have AO, potentially representing misdiagnosed COPD, although symptom burden was high. // Discussion: Spirometry offered alongside LDCT screening can potentially identify cases of undiagnosed and misdiagnosed COPD. Future research should assess the downstream impact of these findings to determine if any meaningful changes to treatment and outcomes occurs, and also to assess the impact on co-delivering spirometry on other parameters of LDCT screening performance such as participation and adherence. Additionally, work is needed to better understand the aetiology of respiratory symptoms in those with misdiagnosed COPD, to ensure this highly symptomatic group receive evidence-based interventions

    Investigating human audio-visual object perception with a combination of hypothesis-generating and hypothesis-testing fMRI analysis tools

    Get PDF
    Primate multisensory object perception involves distributed brain regions. To investigate the network character of these regions of the human brain, we applied data-driven group spatial independent component analysis (ICA) to a functional magnetic resonance imaging (fMRI) data set acquired during a passive audio-visual (AV) experiment with common object stimuli. We labeled three group-level independent component (IC) maps as auditory (A), visual (V), and AV, based on their spatial layouts and activation time courses. The overlap between these IC maps served as definition of a distributed network of multisensory candidate regions including superior temporal, ventral occipito-temporal, posterior parietal and prefrontal regions. During an independent second fMRI experiment, we explicitly tested their involvement in AV integration. Activations in nine out of these twelve regions met the max-criterion (A &lt; AV &gt; V) for multisensory integration. Comparison of this approach with a general linear model-based region-of-interest definition revealed its complementary value for multisensory neuroimaging. In conclusion, we estimated functional networks of uni- and multisensory functional connectivity from one dataset and validated their functional roles in an independent dataset. These findings demonstrate the particular value of ICA for multisensory neuroimaging research and using independent datasets to test hypotheses generated from a data-driven analysis

    A high-density transcript linkage map with 1,845 expressed genes positioned by microarray-based Single Feature Polymorphisms (SFP) in Eucalyptus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Technological advances are progressively increasing the application of genomics to a wider array of economically and ecologically important species. High-density maps enriched for transcribed genes facilitate the discovery of connections between genes and phenotypes. We report the construction of a high-density linkage map of expressed genes for the heterozygous genome of <it>Eucalyptus </it>using Single Feature Polymorphism (SFP) markers.</p> <p>Results</p> <p>SFP discovery and mapping was achieved using pseudo-testcross screening and selective mapping to simultaneously optimize linkage mapping and microarray costs. SFP genotyping was carried out by hybridizing complementary RNA prepared from 4.5 year-old trees xylem to an SFP array containing 103,000 25-mer oligonucleotide probes representing 20,726 unigenes derived from a modest size expressed sequence tags collection. An SFP-mapping microarray with 43,777 selected candidate SFP probes representing 15,698 genes was subsequently designed and used to genotype SFPs in a larger subset of the segregating population drawn by selective mapping. A total of 1,845 genes were mapped, with 884 of them ordered with high likelihood support on a framework map anchored to 180 microsatellites with average density of 1.2 cM. Using more probes per unigene increased by two-fold the likelihood of detecting segregating SFPs eventually resulting in more genes mapped. <it>In silico </it>validation showed that 87% of the SFPs map to the expected location on the 4.5X draft sequence of the <it>Eucalyptus grandis </it>genome.</p> <p>Conclusions</p> <p>The <it>Eucalyptus </it>1,845 gene map is the most highly enriched map for transcriptional information for any forest tree species to date. It represents a major improvement on the number of genes previously positioned on <it>Eucalyptus </it>maps and provides an initial glimpse at the gene space for this global tree genome. A general protocol is proposed to build high-density transcript linkage maps in less characterized plant species by SFP genotyping with a concurrent objective of reducing microarray costs. HIgh-density gene-rich maps represent a powerful resource to assist gene discovery endeavors when used in combination with QTL and association mapping and should be especially valuable to assist the assembly of reference genome sequences soon to come for several plant and animal species.</p

    Development and implementation of a highly-multiplexed SNP array for genetic mapping in maritime pine and comparative mapping with loblolly pine

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Single nucleotide polymorphisms (SNPs) are the most abundant source of genetic variation among individuals of a species. New genotyping technologies allow examining hundreds to thousands of SNPs in a single reaction for a wide range of applications such as genetic diversity analysis, linkage mapping, fine QTL mapping, association studies, marker-assisted or genome-wide selection. In this paper, we evaluated the potential of highly-multiplexed SNP genotyping for genetic mapping in maritime pine (<it>Pinus pinaster </it>Ait.), the main conifer used for commercial plantation in southwestern Europe.</p> <p>Results</p> <p>We designed a custom GoldenGate assay for 1,536 SNPs detected through the resequencing of gene fragments (707 <it>in vitro </it>SNPs/Indels) and from Sanger-derived Expressed Sequenced Tags assembled into a unigene set (829 <it>in silico </it>SNPs/Indels). Offspring from three-generation outbred (G2) and inbred (F2) pedigrees were genotyped. The success rate of the assay was 63.6% and 74.8% for <it>in silico </it>and <it>in vitro </it>SNPs, respectively. A genotyping error rate of 0.4% was further estimated from segregating data of SNPs belonging to the same gene. Overall, 394 SNPs were available for mapping. A total of 287 SNPs were integrated with previously mapped markers in the G2 parental maps, while 179 SNPs were localized on the map generated from the analysis of the F2 progeny. Based on 98 markers segregating in both pedigrees, we were able to generate a consensus map comprising 357 SNPs from 292 different loci. Finally, the analysis of sequence homology between mapped markers and their orthologs in a <it>Pinus taeda </it>linkage map, made it possible to align the 12 linkage groups of both species.</p> <p>Conclusions</p> <p>Our results show that the GoldenGate assay can be used successfully for high-throughput SNP genotyping in maritime pine, a conifer species that has a genome seven times the size of the human genome. This SNP-array will be extended thanks to recent sequencing effort using new generation sequencing technologies and will include SNPs from comparative orthologous sequences that were identified in the present study, providing a wider collection of anchor points for comparative genomics among the conifers.</p
    corecore